

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- n HIGH VOLTAGE CAPABILITY
- n LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- n VERY HIGH SWITCHING SPEED

APPLICATION

- n COMPACT FLUORESCENT LAMPS (CFLS)
- SWITCH MODE POWER SUPPLIES (AC / DC CONVERTERS)

The device is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and high voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

Figure 1: Package

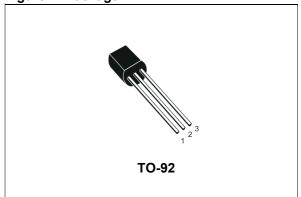


Figure 2: Internal Schematic Diagram

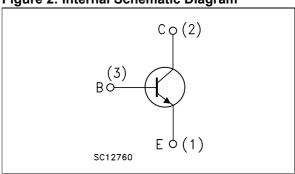


Table 1: Order Code

Part Number	Marking	Package	Packaging	
STX13005	X13005	TO-92	Bulk	
STX13005-AP	X13005	TO-92 AP	Ammopack	

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V_{EBO}	Emitter-Base Voltage (I_C = 0, I_B = 1.5 A, t_p < 10ms)	V _{(BR)EBO}	V
I _C	Collector Current	3	Α
I _{CM}	Collector Peak Current (t _p < 5ms)	6	Α
Ι _Β	Base Current	1.5	Α
I _{BM}	Base Peak Current (t _p < 5ms)	3	Α
P _{tot}	Total Dissipation at T _C = 25 °C	2.8	W

February 2005 Rev. 2 1/9

Symbol	Parameter	Value	Unit
T _{stg}	Storage Temperature	-65 to 150	°C
T _J	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

Symbol	Parameter			Unit
R _{thj-case}	Thermal Resistance Junction-Case	Max	44.6	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	150	°C/W

Table 4: Electrical Characteristics (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Cor	nditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current	V _{CE} = 700 V				1	mA
	(V _{BE} = 0)	V _{CE} = 700 V	T _j = 125 °C			5	mA
I _{CEO}	Collector Cut-off Current	V _{CE} = 400 V				1	mA
	$(I_B = 0)$						
V _{(BR)EBO}	Emitter-Base	I _E = 10 mA	L = 25 mH	9		18	V
	Breakdown Voltage						
	$(I_C = 0)$						
V _{CE(sus)} *	Collector-Emitter	I _C = 10 mA		400			V
	Sustaining Voltage						
	$(I_B = 0)$						
V _{CE(sat)} *	Collector-Emitter	I _C = 1 A	I _B = 200 mA			0.5	V
	Saturation Voltage	I _C = 2 A	$I_B = 500 \text{ mA}$			0.6	V
		I _C = 3 A	I _B = 750 mA			5	V
V _{BE(sat)} *	Base-Emitter	I _C = 1 A	I _B = 200 mA			1.2	V
	Saturation Voltage	I _C = 2 A	I _B = 500 mA			1.6	V
h _{FE} *	DC Current Gain	I _C = 1 A	V _{CE} = 5 V	10		30	
		I _C = 2 A	$V_{CE} = 5 V$	8		24	
	RESISTIVE LOAD	I _C = 2 A	V _{CC} = 125 V				
t_s	Storage Time	I _{B1} = - I _{B2} = 400 mA	t _p = 30 μs		1.65		μs
t _f	Fall Time	(see figure 16)	,		260		ns
	INDUCTIVE LOAD	I _C = 1 A	V _{Clamp} = 300 V				
t_s	Storage Time	I _{B1} = 200 mA	$V_{BE(off)} = -5 V$		8.0		μs
t _f	Fall Time	L = 50 mH	$R_{BB} = 0$		150		ns
		(see figure 15)					

^{*} Pulsed: Pulsed duration = 300 μ s, duty cycle \leq 1.5 %.

Figure 3: Safe Operating Area

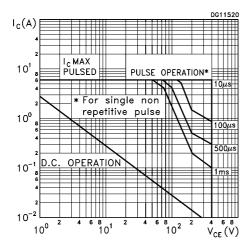


Figure 4: Output Chatacterisctics

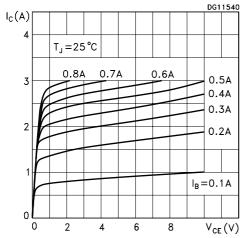


Figure 5: DC Current Gain

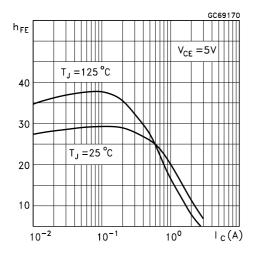


Figure 6: Derating Curve

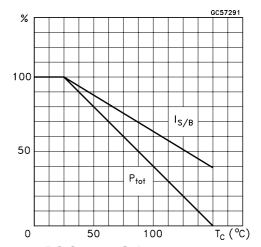


Figure 7: DC Current Gain

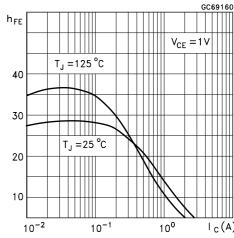


Figure 8: Collector-Emitter Saturation Voltage

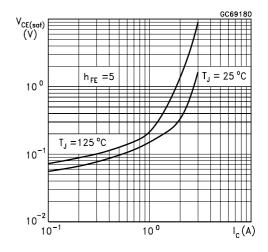


Figure 9: Base-Emitter Saturation Voltage

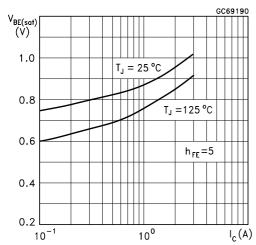


Figure 10: Resistive Load Fall Time

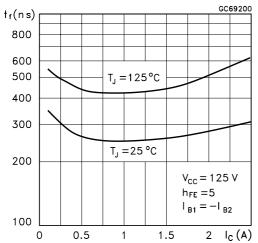


Figure 11: Inductive Load Fall Time

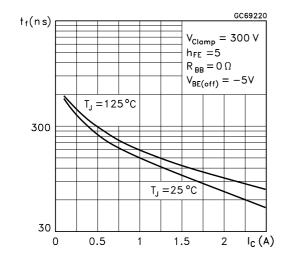


Figure 12: Resistive Load Storage Time

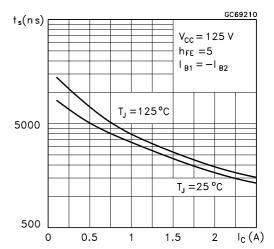


Figure 13: Inductive Load Storage Time

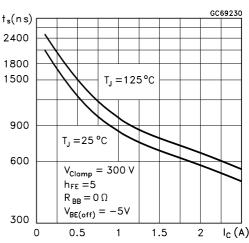


Figure 14: Reverse Biased Safe Operating Area

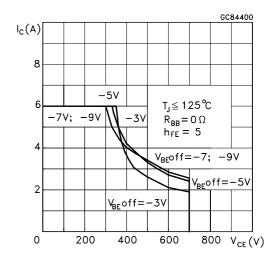
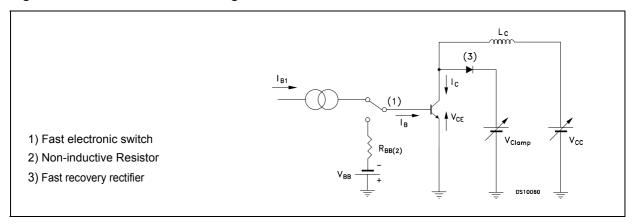
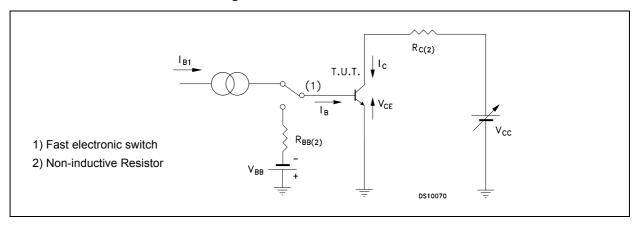




Figure 15: Inductive Load Switching Test Circuit

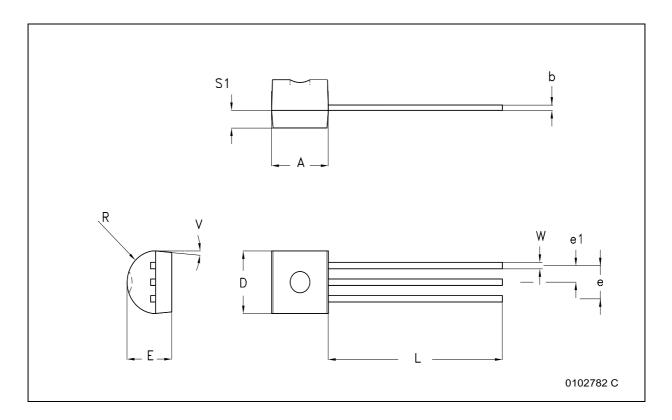
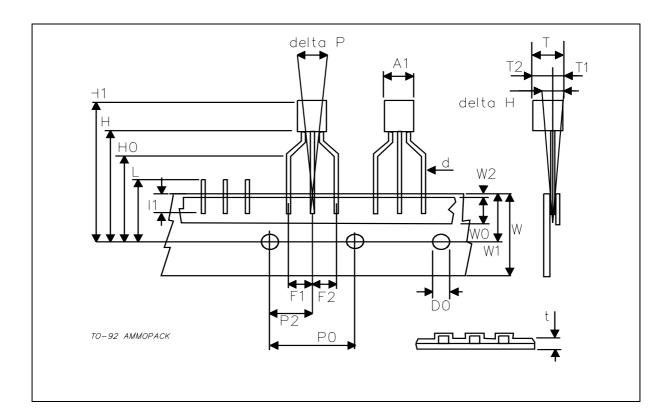


Table 16: Restistive Load Switching Test Circuit


TO-92 BULK SHIPMENT MECHANICAL DATA

DIM.	mm.					
	MIN.	TYP	MAX.			
А	4.32		4.95			
b	0.36		0.51			
D	4.45		4.95			
E	3.30		3.94			
е	2.41		2.67			
e1	1.14		1.40			
L	12.70		15.49			
R	2.16		2.41			
S1	0.92		1.52			
W	0.41		0.56			
V		5 ^O				

TO-92 AMMOPACK SHIPMENT (Suffix"-AP") MECHANICAL DATA

DIM.	mm.			
	MIN.	TYP	MAX.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d			0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1,F2	2.44	2.54	2.94	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
W0	5.70	6.00	6.30	
W1	8.50	9.00	9.25	
W2			0.50	
Н	18.50		20.50	
H0	15.50	16.00	16.50	
H1			25.00	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
I1	3.00			
delta P	-1.00		1.00	

STX13005

Table 5: Revision History

Date	Release	Change Designator
01-Jul-2004	1	First Release.
11-Feb-2005	2	New table on page 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

